We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Targeted therapy for thymic epithelial tumors: a new horizon? Review of the literature and two cases reports

    Matteo Simonelli

    *Author for correspondence:

    E-mail Address: matteo.simonelli@cancercenter.humanitas.it

    Humanitas Cancer Center, Oncology & Hematology Unit, Istituto Clinico Humanitas IRCCS, 20089 Rozzano MI, Italy

    ,
    Paolo A Zucali

    Humanitas Cancer Center, Oncology & Hematology Unit, Istituto Clinico Humanitas IRCCS, 20089 Rozzano MI, Italy

    ,
    Matteo B Suter

    Humanitas Cancer Center, Oncology & Hematology Unit, Istituto Clinico Humanitas IRCCS, 20089 Rozzano MI, Italy

    ,
    Elena Lorenzi

    Humanitas Cancer Center, Oncology & Hematology Unit, Istituto Clinico Humanitas IRCCS, 20089 Rozzano MI, Italy

    ,
    Luca Rubino

    Humanitas Cancer Center, Oncology & Hematology Unit, Istituto Clinico Humanitas IRCCS, 20089 Rozzano MI, Italy

    ,
    Giuseppe Fatuzzo

    Humanitas Cancer Center, Oncology & Hematology Unit, Istituto Clinico Humanitas IRCCS, 20089 Rozzano MI, Italy

    ,
    Marco Alloisio

    Humanitas Cancer Center, Thoracic Surgery Unit, Istituto Clinico Humanitas IRCCS, 20089 Rozzano MI, Italy

    &
    Armando Santoro

    Humanitas Cancer Center, Oncology & Hematology Unit, Istituto Clinico Humanitas IRCCS, 20089 Rozzano MI, Italy

    Published Online:https://doi.org/10.2217/fon.14.318

    ABSTRACT 

    Surgical resection remains the cornerstone of therapy for early-stage thymic epithelial tumors (TETs), while in advanced or recurrent forms, a multimodality approach incorporating radiation and chemotherapy is required. Given the absence of effective treatment options for metastatic/refractory TETs and the poor related prognosis, there is a compelling need to identify promising ‘drugable’ molecular targets. Initial reports of activity from targeted agents in TETs derived from anecdotal cases have been often associated with specific activating mutations. Only in recent years, several agents have been formally investigated into prospective clinical trials, with varying success rates. We reviewed the literature on targeted therapy in TETs along with two cases of thymoma achieving striking responses to sorafenib in combination with lapatinib.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Engels EA. Epidemiology of thymoma and associated malignancies. J. Thorac. Oncol. 5(10 Suppl. 4), S260–S265 (2010).
    • 2 Detterbeck FC, Parsons AM. Thymic tumors. Ann. Thorac. Surg. 77, 1860–1869 (2004).
    • 3 Kuo TT. Tumours of the thymus. In: World Health Organization Classification of Tumors: Pathology and Genetics of Tumors of the Lung, Pleura, Thymus and Heart. Travis WD, Brambilla E, Muller-Hermelink HK et al. (Eds). IARC Press, Lyon, France, 146–248 (2004).
    • 4 Masaoka A, Monden Y, Nakahara K et al. Follow-up study of thymomas with special reference to their clinical stages. Cancer 48, 2485–2492 (1981).
    • 5 Rajan A, Giaccone G. Treatment of advanced thymoma and thymic carcinoma. Curr. Treat. Options. Oncol. 9, 277–287 (2008).
    • 6 Kelly RJ, Petrini I, Rajan A et al. Thymic malignancies: from clinical management to targeted therapies. J. Clin. Oncol. 29(36), 4820–4827 (2011).•• Excellent review on thymic tumors from the clinical perspective.
    • 7 Suzuki E, Sasaki H, Kawano O et al. Expression and mutation statuses of epidermal growth factor receptor in thymic epithelial tumors. Jpn. J. Clin. Oncol. 36, 351–356 (2006).
    • 8 Henley JD, Cummings OW, Loehrer PJ Sr. Tyrosine kinase receptor expression in thymomas. J. Cancer. Res. Clin. Oncol. 130, 222–224 (2004).
    • 9 Yoh K, Nishiwaki Y, Ishii G et al. Mutational status of EGFR and KIT in thymoma and thymic carcinoma. Lung. Cancer. 62(3), 316–320 (2008).
    • 10 Yamaguchi H, Soda H, Kitazaki T et al. Thymic carcinoma with epidermal growth factor receptor gene mutations. Lung. Cancer. 52(2), 261–262 (2006).
    • 11 Ionescu DN, Sasatomi E, Cieply K et al. Protein expression and gene amplifıcation of epidermal growth factor receptor in thymomas. Cancer 103(3), 630–636 (2005).
    • 12 Farina G, Garassino MC, Gambacorta M et al. Response of thymoma to cetuximab. Lancet. Oncol. 8, 449–450 (2007).
    • 13 Palmieri G, Marino M, Salvatore M et al. Cetuximab is an active treatment of metastatic and chemorefractory thymoma. Front. Biosci. 12, 757–761 (2007).
    • 14 Kurup A, Burns M, Dropcho S et al. Phase II study of gefıtinib treatment in advanced thymic malignancies. J. Clin. Oncol. 23(Suppl.), Abstract 7068 (2005).
    • 15 Bedano PM, Perkins S, Burns M et al. A Phase II trial of erlotinib plus bevacizumab in patients with recurrent thymoma or thymic carcinoma. J. Clin. Oncol. 26, S713(Suppl.), Abstract 19087 (2008).
    • 16 Pan CC, Chen PC, Wang LS et al. Expression of apoptosis-related markers and HER-2/neu in thymic epithelial tumours. Histopathology 43, 165–172 (2003).
    • 17 Weissferdt A, Lin H, Woods D et al. HER family receptor and ligand status in thymic carcinoma. Lung Cancer 77, 515–521 (2012).
    • 18 Girard N, Shen R, Guo T et al. Comprehensive genomic analysis reveals clinically relevant molecular distinctions between thymic carcinomas and thymomas. Clin. Cancer Res. 15(22), 6790–6799 (2009).
    • 19 Pan CC, Chen PC, Chiang H. KIT (CD117) is frequently overexpressed in thymic carcinomas but is absent in thymomas. J. Pathol. 202(3), 375–381 (2004).
    • 20 Srobel P, Hartmann M, Jakob A et al. Thymic carcinoma with overexpression of mutated KIT and the response to imatinib. N. Engl. J. Med. 350(25), 2625–2626 (2004).
    • 21 Bisagni G, Rossi G, Cavazza A et al. Long lasting response to the multikinase inhibitor bay 43–9006 (sorafenib) in a heavily pretreated metastatic thymic carcinoma. J. Thorac. Oncol. 4, 773–775 (2009).
    • 22 Girard N. Thymic tumors: relevant molecular data in the clinic. J. Thorac. Oncol. 5(Suppl. 4), S291–S295 (2010).
    • 23 Buti S, Donini M, Sergio P et al. Impressive response with imatinib in a heavily pretreated patient with metastatic c-KIT mutated thymic carcinoma. J. Clin. Oncol. 29, e803–e805 (2011).
    • 24 Schirosi L, Nannini N, Nicoli D et al. Activating c-KIT mutations in a subset of thymic carcinoma and response to different c-KIT inhibitors. Ann. Oncol. 23, 2409–2414 (2012).
    • 25 Salter JT, Levis D, Yannoutsos C et al. Imatinib for the treatment of thymic carcinoma. Presented at: 44th American Society of Clinical Oncology. Chicago, IL, USA, 30 May–3 June 2008.
    • 26 Giaccone G, Rajan A, Ruijter R et al. Imatinib mesylate in patients with WHO B3 thymoma and thymic carcinoma. J. Thorac. Oncol. 4(10), 1270–1273 (2009).
    • 27 Palmieri G, Marino M, Buonerba C et al. Imatinib mesylate in thymic epithelial malignancies. Cancer Chemother. Pharmacol. 69(2), 309–315 (2012).
    • 28 Cimpean AM, Raica M, Encica S et al. Immunohistochemical expression of vascular endothelial growth factor A (VEGF), and its receptors (VEGFR1, 2) in normal and pathologic conditions of the human thymus. Ann. Anat. 190, 238–245 (2008).
    • 29 Tomita M, Matsuzaki Y, Edagawa M et al. Correlation between tumor angiogenesis and invasiveness in thymic epithelial tumors. J. Thorac. Cardiovasc. Surg. 124, 493–498 (2002).
    • 30 Sasaki H, Yukiue H, Kobayashi Y et al. Elevated serum vascular endothelial growth factor and basic fibroblast growth factor levels in patients with thymic epithelial neoplasms. Surg. Today 31, 1038–1040 (2001).
    • 31 Isambert N, Freyer G, Zanetta S et al. A phase I dose escalation and pharmacokinetic (PK) study of intravenous aflibercept (VEGF trap) plus docetaxel (D) in patients (pts) with advanced solid tumors: preliminary results. Presented at: 44th American Society of Clinical Oncology. Chicago, IL, USA, 30 May–3 June 2008.
    • 32 Li XF, Chen Q, Huang WX et al. Response to sorafenib in cisplatin-resistant thymic carcinoma: a case report. Med. Oncol. 26, 157–160 (2009).
    • 33 Dişel U, Oztuzcu S, Beşen AA et al. Promising efficacy of sorafenib in a relapsed thymic carcinoma with C-KIT exon 11 deletion mutation. Lung Cancer 7, 109–112 (2011).
    • 34 Neuhaus T, Luyken J. Long lasting efficacy of sorafenib in a heavily pretreated patient with thymic carcinoma. Target Onccol. 7, 247–251 (2012).
    • 35 Fiedler W, Giaccone G, Lasch P et al. Phase I trial of SU14813 in patients with advanced solid malignancies. Ann. Oncol. 22(1), 195–201 (2011).
    • 36 Thomas A, Rajan A, Berman AW et al. Phase II trial of sunitinib in patients with thymic epithelial tumors (TET). Presented at: 50th American Society of Clinical Oncology. Chicago, IL, USA, 30 May–3 June 2014.•• Phase II study demonstrated an unprecedented activity for a targeted agent in treatment of thymic carcinoma.
    • 37 Girard N, Teruya-Feldstein J, Payabyab EC et al. Insulin-like growth factor-1 receptor expression in thymic malignancies. J. Thorac. Oncol. 5(9), 1439–1446 (2010).
    • 38 Zucali PA, Petrini I, Lorenzi E et al. Insulin-like growth factor-1 receptor and phosphorylated AKT-serine 473 expression in 132 resected thymomas and thymic carcinomas. Cancer 116(20), 4686–4695 (2010).
    • 39 Haluska P, Shaw HM, Batzel GN et al. Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin. Cancer Res. 13, 5834–5840 (2007).
    • 40 McKian KP, Haluska P. Cixutumumab. Expert Opin. Investig. Drugs 18, 1025–1033 (2009).
    • 41 Rajan A, Carter CA, Berman A et al. Cixutumumab for patients with recurrent or refractory advanced thymic epithelial tumours: a multicentre, open-label, Phase 2 trial. Lancet Oncol. 15(2), 191–200 (2014).•• Cixutumumab demonstrated activity in relapsed thymomas with a disease-stabilizing effect.
    • 42 Steele NL, Plumb JA, Vidal L et al. A Phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin. Cancer Res. 14(3), 804–810 (2008).
    • 43 Giaccone G, Rajan A, Berman A et al. Phase II study of belinostat in patients with recurrent or refractory advanced thymic epithelial tumors. J. Clin. Oncol. 29(15), 2052–2059 (2011).
    • 44 Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 27(13), 2278–2287 (2009).
    • 45 Zucali PA, De Pas G, Palmieri G et al. Phase II study of everolimus in patients with thymoma and thymic carcinoma previously treated with cisplatin-based chemotherapy. Presented at: 50th American Society of Clinical Oncology. Chicago, IL, USA, 30 May–3 June 2014.
    • 46 Besse B, Garassino MC, Rajan A et al. A Phase II study of milciclib (PHA-848125AC) in patients (pts) with thymic carcinoma (TC). Presented at: 50th American Society of Clinical Oncology. Chicago, IL, USA, 30 May–3 June 2014.
    • 47 Simonelli M, Zucali PA, Lorenzi E et al. Phase I pharmacokinetic and pharmacodynamic study of lapatinib in combination with sorafenib in patients with advanced refractory solid tumors. Eur. J. Cancer 49(5), 989–998 (2013).• Published report on the Phase I trial of sorafenib in combination with lapatinib.